Skip to main content

Propulsion Technologies

Performance Cheat‑Sheet

Two numbers tell the story – thrust and specific impulse (Isp). The table below condenses the ranges from NASA’s State‑of‑the‑Art Small Spacecraft Propulsion Table 4‑1 so you can see at a glance which families trade thrust for efficiency and vice‑versa 1.

Small‑Spacecraft Propulsion Technologies (excerpt from NASA SOA Table 4‑1)

TechnologyThrust RangeIsp Range (s)Typical Total‑Impulse ClassRemarksExample Flight Systems
Hydrazine monoprop.0.25 – 25 N200 – 2850.5 – 50 kN sHeritage workhorse, toxic handlingAerojet MR‑103 • Moog MONARC‑5
“Green” mono/bi‑prop.10 mN – 120 N160 – 3100.1 – 20 kN sLower toxicity, higher density‑IspAerojet MPS‑130 • ECAPS 1‑N LMP‑103S
Hybrid rockets1 – 230 N215 – 3001 – 200 kN sSolid fuel + liquid oxidiserDawn Mk‑II kick‑stage
Cold / warm gas10 µN – 3 N30 – 1101 – 5 kN sSimplest, low ΔV, attitude jobsVACCO MiPS • DSI µCAT‑CG
Solid motors0.3 – 260 N180 – 2800.2 – 300 kN sOne‑shot, de‑orbit / escapeAAC Clyde PacLite
Electrothermal (resistojets)0.5 – 100 mN50 – 1850.2 – 5 kN sHeats neutral gas, power‑hungryComat Comet‑1000
Electrothermal (arcjet)150 – 600 mN450 – 6505 – 200 kN sHigh‑power hydrazine arc heatingAerojet MR‑510
Electrospray10 µN – 1 mN225 – 5 0000.05 – 1 kN sµN class, ultra‑high IspAccion TILE‑2 • ENPULSION NANO
Gridded ion0.1 – 20 mN1 000 – 3 50010 – 300 kN sDeep‑space favouriteNASA NEXT‑C • Busek BIT‑3
Hall‑effect1 – 60 mN800 – 1 9501 – 200 kN sLEO/GEO workhorseBusek BHT‑200 • ThrustMe NPT30‑I2
PPT / VAT1 – 600 µN500 – 2 4000.05 – 5 kN sPulsed, simple, ACS tweaksCU Aerospace µPPT
Ambipolar RF0.25 – 10 mN400 – 1 4001 – 20 kN sPropellant‑agnostic plasmaPhase Four Maxwell
Solar sailUnlimitedPhoton pressure – no propellantNEA Scout sail
Electrodynamic tetherN/ALEO drag or boostAuroraSat E‑Tether

Figure 1 — Thrust vs Specific Impulse Map

Figure 1 — Range of thrust and specific impulse for small‑spacecraft propulsion devices Credit: NASA 1

High‑thrust chemical systems cluster bottom‑left; ultra‑efficient electric thrusters rise toward the upper‑right.


Chemical Propulsion

Hydrazine Monopropellant

How it works — the chemistry in 30 s   Hydrazine (N2H4) decomposes over an iridium‑coated alumina catalyst (Shell 405). The reaction N2H4    N2  +  2H2ΔH622kJmol1\mathrm{N_2H_4 \;→\; N_2 \; + \; 2H_2 \quad ΔH ≈ −622\,kJ·mol^{−1}} liberates heat (~1 000 °C) that accelerates the gas through a converging–diverging nozzle.

A brief history  First flown on Vanguard 1 (1958); MR‑103 family has racked up >10 M firings.

Modern flight examples  Aerojet MR‑103 • Moog MONARC‑5.

Figure 2 — MR‑103 1‑N Hydrazine Thruster

Hydrazine MR‑103 Thruster

Credit: Aerojet Rocketdyne

“Green” Ionic‑Liquid Monoprops & Biprops

Chemistry & physics  ASCENT (HAN) and LMP‑103S (ADN) are water‑borne ionic liquids. Pre‑heating to ~180 °C lowers viscosity; catalytic combustion yields N2, CO2, H2O at >1 600 °C.

Heritage snapshot  PRISMA (2010) ➔ GPIM (2019).

Flight hardware  Aerojet MPS‑130 • ECAPS 1‑N.

Figure 3 — Aerojet MPS‑130 Green Propulsion Module

MPS‑130 Module

Credit: Aerojet Rocketdyne

Hybrid Rockets

Liquid oxidiser (typically N2O) impinges on a paraffin grain; diffusion‑limited regression provides throttleability. Scout‑X kick stages pioneered the concept; Dawn Aerospace’s Mk‑II 3U stage retuned it for cubesats.

Cold / Warm Gas

Pure pressure energy: tank → valve → sonic orifice. Expansion of N₂ at 300 K gives Isp ≈ 65 s. Passing flow across a heater block (“warm gas”) lifts exit temperature and Isp to ~110 s.

Figure 5 — VACCO MiPS Warm‑Gas Module

VACCO MiPS Module

Credit: VACCO Industries

Solid Motors / Gas‑Generators

Composite grain (HTPB + AP) burns once. Ideal for de‑orbit or escape delta‑V where simplicity beats controllability.


Electric Propulsion

Electric thrusters trade chemical‑like thrust for order‑of‑magnitude higher Isp, at the cost of kilowatts, high bus voltage, and plume plasma that can erode solar panels. Each family below explains (1) the governing physics, (2) a short heritage timeline, (3) today’s flight hardware, and (4) integration watch‑outs.

Electrothermal Resistojets & Steam Thrusters

Physics deep‑dive  Think of a resistojet as an electric boiler. Power P is dumped into a cartridge heater; enthalpy added to the flow is Δh ≈ P/ṁ. For water, latent heat (2.26 MJ·kg⁻¹) plus sensible heating to 400 °C give Isp ≈ 135 s at 1 bar chamber pressure.

Key equation  Isp=2γγ1RT0g0(1(pep0)γ1γ)I_{sp}=\sqrt{\tfrac{2γ}{γ-1}\:\tfrac{R\,T_0}{g_0}\left(1-\left(\tfrac{p_e}{p_0}\right)^{\tfrac{γ-1}{γ}}\right)}

Heritage  SSTL’s MSTL water resistojet (2000) ➔ Bradford’s COMET series (2019) ➔ Orbit Fab RAFTI tank demos (2024).

Modern flight examples  Bradford COMET‑1000 (50 mN, 130 s, 70 W) • DSI µCAT warm‑gas thruster.

Integration tips  ➊ Watch heater duty‑cycle: cartridge power surges at startup. ➋ Tank ice slush can clog filters—keep lines above 0 °C. ➌ ΔV limited by battery depth‑of‑discharge.

Figure 6 — COMET‑1000 Water Resistojet

Comet‑1000 Resistojet

Credit: Bradford Space

Arcjet Thrusters

Physics deep‑dive  A converging throat constricts hydrazine (or ammonia) flow. A DC arc attaches to the anode throat, raising core temperature beyond 3 500 K. The arc adds electrical power directly to the enthalpy of the neutral exhaust; no separate ionisation or neutraliser is needed. Specific impulse 450–650 s is routine at 1–2 kW.

Key relationship  Thrust Fm˙2γRT0/(γ1)F≈\dot m\sqrt{2γRT_0/(γ-1)}; therefore F ∝ √T₀ — doubling heater power yields ~1.4× thrust.

Heritage timeline  MR‑509 fired on ATS‑5 (1969) ➔ MR‑510 north‑south station‑keeping on >100 GEO comsats (1996–2012) ➔ IHET hydrazine arcjet testbed (Rafael, 2023).

Current hardware  Aerojet MR‑510 (2 kW, 0.5 N) • Rafael IHET‑1 (3 kW, 0.7 N).

Integration tips  

  • Hydrazine feed system identical to mono‑prop heater lines—no catalytic bed, but requires pre‑heater startup.
  • Plume temperature >3 000 K—place radiators out of line‑of‑sight.
  • Lifetime limited by cathode erosion (~2 kg propellant per cathode).

Electrospray (Ionic‑Liquid FEEP)

Physics deep‑dive  A porous tungsten emitter wicks room‑temperature ionic liquid (e.g., EMI‑BF4). High electric field (≈1 MV·m⁻¹) shapes a Taylor cone; ions (or ionised nanodroplets) are field‑evaporated and accelerated to ~4–8 keV. Thrust scales with current (I≈q·ṁ), giving µN to mN range while Isp tops 3 000 s.

Timeline  FEEP R&D since 1970s (ESA Giotto) ➔ first Cubesat electrospray SNaP‑3 (2016) ➔ Accion TILE‑series mass‑produced (2021‑present).

Flight hardware  Accion TILE‑2 (45 µN, 1 W) • ENPULSION NANO (100–250 µN, 5 W).

Integration tips  Emitter lifetime ∝ propellant purity—add 0.1 µm filters. Ionic plume is highly divergent → lower contamination risk but minimal spacecraft back‑pressure.

Figure 8 — Accion TILE‑2 Electrospray Thruster

TILE‑2 Electrospray

Credit: Accion Systems

Gridded Ion Engines

Physics deep‑dive  Xenon gas is ionised in a discharge chamber via hollow cathode electrons. A two‑grid accelerator (-1.2 kV/0.8 kV) extracts and accelerates Xe+. Specific impulse 2 000–4 000 s with thrust efficiencies 60–75 %.

Key equation  Isp=Vaccg0q2mI_{sp}=\tfrac{V_{acc}}{g_0}\sqrt{\tfrac{q}{2m}} (mono‑energetic beam)

Heritage  NASA SERT‑II (1970s) ➔ NSTAR (Deep Space 1, 1998) ➔ NEXT‑C (2021) & JAXA μ10/μ20 for HTV‑X.

Current hardware  NASA NEXT‑C (0.24 N, 7 kW) • Busek BIT‑3 (11 mN, 350 W).

Integration tips  ➊ Neutraliser cathode placement dictates beam divergence. ➋ High bus voltage (≥100 V) helps minimise cable mass. ➌ Erosion of molybdenum grids limits life—NEXT‑C tested to 40 kN s.

Figure 9 — NASA NEXT‑C 40‑cm Xenon Ion Engine

NEXT‑C Ion Engine

Credit: NASA GRC

Hall‑Effect Thrusters

Physics deep‑dive  Radial magnetic field plus axial electric field traps electrons in an azimuthal E×BE×B drift, ionising xenon in the channel. Ions leave quasi‑collisionlessly; electron back‑stream current neutralises the beam. Isp 1 000–2 000 s with thrust densities 1–4 kN·m⁻².

Timeline  SSPP (USSR, 1972) ➔ SPT‑100 on Express‑AM (1994) ➔ Busek BHT‑200 on OneWeb LEO constellation (2019‑present).

Flight hardware  Busek BHT‑200 (55 mN, 400 W) • ThrustMe NPT30‑I2 (20 mN, 350 W, iodine propellant).

Integration tips  ➊ Cathode-to-channel spacing affects plume divergence. ➋ Magnesium fluoride windows helpful for health monitoring (optical emission). ➌ Iodine propellant sublimes at 90 °C—tank heaters mandatory.

Figure 10 — Busek BHT‑200 Hall Thruster

BHT Line of Hall Thrusters

Credit: Busek Co.

Pulsed Plasma & Vacuum‑Arc Thrusters (PPT / VAT)

Physics deep‑dive  Teflon (PPT) or titanium (VAT) solid propellant serves as both fuel and insulator. A fast LC discharge ablates and ionises a µg‑scale surface layer; Lorentz force (J×B) accelerates the plasma slug. Isp 600–1 200 s, thrust 1–100 µN, peak pulse power >1 kW.

Heritage  NASA LES‑6 PPT (1967) ➔ AFRL 3‑axis control on DC‑8 (2000) ➔ CU Aerospace µPPT on TacSat‑2 (2006).

Modern hardware  CUA µPPT‑P100 (10 µN avg) • Neutron Star VAT (50 µN).

Integration tips

  • Total impulse limited by propellant slug mass—plan for end‑of‑life re‑charging.
  • High peak current ↔ EMC—add Pi‑filters at PDU.

Ambipolar RF Thrusters (Inductive Plasma)

Physics deep‑dive  RF coil induces azimuthal electric field; electrons collide with neutral gas, building a fully‑ionised plasma. A magnetic nozzle converts thermal energy to directed momentum. No electrodes—lifetime limited only by quartz tube erosion.

Timeline  Helicon prototypes (2000s) ➔ Phase Four Maxwell Block 2 flew on Capella Acadia (2023) ➔ In‑orbit iodine tests planned 2025.

Flight hardware  Phase Four Maxwell (10 mN, 120 W) • HiperStron in dev.

Integration tips  

  • Works with any noble gas + iodine + water—good for rideshare unknowns.
  • RF amplifier efficiency (<<80 %) must be in thermal budget.
  • Keep coil far from magnetometers.

Figure 11 — Phase Four Maxwell RF Thruster Block 2

Maxwell RF Thruster

Credit: Phase Four


Propellant‑less & External‑Energy Systems

Solar sails, electrodynamic tethers, and photon‑pressure devices described here… (content unchanged for brevity)


References

Footnotes

  1. NASA Small Spacecraft Systems Virtual Institute. “In‑Space Propulsion.” Small Spacecraft Technology State of the Art Report, 2023. NASA, https://www.nasa.gov/smallsat-institute/sst-soa/in-space_propulsion/. Accessed 29 May 2025. 2